This is a review text file submitted electronically to MR.
Reviewer: Konstantopoulos, Takis
Reviewer number: 68397

Address:

School of Mathematical \& Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS
SCOTLAND
T.Konstantopoulos@hw.ac.uk,takis@ma.hw.ac.uk

Author: Bassetti, F.; Cosentino Lagomarsino, M.; Mandra, S.
Short title: Exchangeable random networks.
MR Number: 2522949
Primary classification: 60K30
Secondary classification(s): 05C80, 60G09

Review text:

amsfonts
This paper is concerned with arrays of $\{0,1\}$-valued random variables $\left[X_{i, j}^{(n)}\right]_{1 \leq i \leq m_{n}, 1 \leq j \leq n}$
such that, conditionally on i.i.d. random variables $\theta_{1}, \ldots, \theta_{n}$, the rows $X_{1, \bullet}^{(n)}, \ldots, X_{m_{n}, \bullet}^{(n)}$
are independent n-vectors, with the i-th row $X_{i, \bullet}^{(n)}$ being a sequence of $\operatorname{Bernoulli}\left(\theta_{i}\right)$ random variables. The common distribution of the θ_{i} is a probability measure π_{n} on the interval $[0,1]$.
The authors prove that if $n \theta_{n}$ converges weakly to a random variable T, as $n \rightarrow$ ∞, then $S_{n, i}:=\sum_{j} X_{i, j}^{(n)}$ converges weakly to a random variable which is Poisson with mean T, conditionally on T. Also, if $n m_{n} \mathbb{E} \theta_{n} \rightarrow \lambda$ then $Z_{m_{n}, j}:=\sum_{i} X_{i, j}^{(n)}$ converges to a Poisson (λ) limit. They then evaluate limit the limit of $S_{n, i}$ in several special cases. They also compute the limit of $\mathbb{P}\left(\max \left(S_{1}, \ldots, S_{n}\right) \leq x b_{n}\right)$ for appropriate sequence b_{n}, and under certain conditions.

When $m_{n}=n$ one can think of $\left[X_{i, j}^{(n)}\right]$ as the incidence matrix of a random directed graph G_{n} on n vertices. Letting H be a fixed graph, the authors compute a formula for the expected number of graphs which are isomorphic to H and which are subgraphs of G_{n}. In the case where H is of order 3, a formula for the variance is also given. Some other characteristics are also studied.
Interpreting $\mathbb{X}_{n}:=\left[X_{i, j}^{(n)}\right]$ as a matrix in the two-element algebraic field $\{0,1\}$, let $\mathcal{N}\left(\mathbb{X}_{n}\right)$ be the number of nonzero solutions x of the linear equation $\mathbb{X}_{n}^{T} x=0$. A formula for $\mathbb{E} \mathcal{N}\left(\mathbb{X}_{n}\right)$ is given, and it is remarked that the expected total number of hypercycles of G_{n} is simply expressed in terms of this quantity.

Some remarks are made for more general exchangeable graphs. The formulas derived in the paper are made explicit in the case where $\pi_{n}(\theta) \propto \theta^{-\beta} 1(\theta>\alpha / n)$
for some $\beta>1$ and $0<\alpha<n$.
In connection to the paper under review, the reader should be aware of the recent fundamental paper by Persi Diaconis and Svante Janson, "graph limits and exchangeable random graphs", Rendiconti di Matematica, 28 (2008).

